Fourth North American Summer School in Logic, Language, and Information

June 20–26, 2010

June 20 Tutorials
June 21–25 Courses
June 26 Dynamic Epistemic Logic Workshop
June 26 Student Session

Sponsors

National Science Foundation
Association for Logic, Language and Information | Association for Symbolic Logic
Indiana University Cognitive Science Program | College of Arts and Sciences | School of Informatics and Computing | Departments of Linguistics, Mathematics, Philosophy Program in Pure and Applied Logic
Stanford University Center for the Study of Language and Information
Campus Map

Key

- Conference building
- Other building
- University Parking
Contents

Campus Map | 2
Welcome and Introduction | 4
Schedule Day-By-Day | 5
Courses | 6
Tutorials, Workshops, Student Session | 7
Information, Talks | 8
Tutorial and Course Descriptions | 9
Casual and Fine Dining | 15

NASSLLI 2010 Program Committee
David Beaver (committee chair), UT Austin | Thony Gillies, Rutgers University | John Hory, University of Maryland | Sandra Kübler, Indiana University | Eric Pacuit, Stanford University
Chris Potts, Stanford University, Dan Roth, University of Illinois, Urbana/Champaign | Chung-Chieh Shan, Rutgers University | Matthias Scheutz, Indiana University

NASSLLI Local Organizers
Saleh Aliyari | Eric Baucom | Emily Cahill | Rehj Cantrell | Thomas Decker | Markus Dickinson
Eli Drumm | David Fisher | Ryan Fitzpatrick | Qingfang Fu | Bing He | Josh Herring | Yu-Yin Hsu
Christian Hofland | Ross Israel | Sandra Kuebler | Scott Ledbetter | Huina Mao | Tony Meyer
Emad Mohamed | Larry Moss | Jaimie Murdock | Marwa Ragheb | Ramya | Robert Rose | Alex Rudnick | Charese Smiley | Amber Smith | Janet Smith | Mikael Thompson | Wren Thornton
Larisse Vuofo | Erik Wennstrom | Ning Yu

NASSLLI Steering Committee
David Beaver, UT Austin | Larry Moss (chair), Indiana University | Phokion Kolaitis, UC Santa Cruz / IBM Almaden Research Center | Valeria de Paiva, Culli, Inc. | Stuart Shieber, Harvard University | Moshe Vardi, Rice University

Program designed and typeset by Christian Hoffland.
Copyright © 2010 Indiana University. Map copyright © 2010 Christian Hoffland. All rights reserved.
Welcome and Introduction

NASSLLI is a summer school with classes in the interface between computer science, linguistics, and logic.

After previous editions at Stanford University, Indiana University, and UCLA, we are pleased to welcome participants to the fourth NASSLLI at Indiana University, Bloomington, Indiana. The summer school, loosely modeled on the long-running ESSLLI series in Europe, consists of a number of courses and workshops, selected on the basis of the proposals.

Courses and workshops meet for 90 or 120 minutes on each of five days, June 21–25, and there will be tutorials on June 20 and a day-long series of workshops and student sessions on June 26. The instructors are prominent researchers who volunteer their time and energy to present basic work in their disciplines. Many are coming from Europe just to teach at NASSLLI.

NASSLLI courses are aimed at graduate students and advanced undergraduates in wide variety of fields. The instructors know that people will be attending from a wide range of disciplines, and they all are pleased to be associated with an interdisciplinary school. The courses will also appeal to post-docs and researchers in all of the relevant fields.

In addition to classes in the daytime, the evenings will have social events and plenary lectures. Bloomington is a wonderful place to visit, known for arts, music, and ethnic restaurants. All of this is within fifteen minutes walking from campus. We aim to make NASSLLI fun and exciting. Please make sure to read through this program for the details of the events.

We hope that you enjoy the school.

NASSLLI 2010 Program Committee
Schedule Day-By-Day

SUNDAY, JUNE 20

Tutorials
9:00 a–4:30 p | Swain East 140

MONDAY, JUNE 21

Registration
8:00 a | Rawles Hall 107

Reception
7:00–8:30 p | Woodburn House, 519 North College Avenue

MONDAY, JUNE 21 TO FRIDAY, JUNE 25

Courses
9:00 a–5:30 p | Various rooms

WEDNESDAY, JUNE 23

Invited Lecture: Measuring Belief
Rohit Parikh
6:30–8:00 p | Rawles Hall 100
Refreshments will be served afterwards in Rawles Hall 107

THURSDAY, JUNE 24

Party!
7:00 p | Mathers Museum, 416 North Indiana Avenue

SATURDAY, JUNE 26

Workshop on New Directions in Dynamic Epistemic Logic
9:00–11:30 a | Swain East 140

Student Session
1:00–5:20 p | Swain East 140
Courses

See pages 9–14

<table>
<thead>
<tr>
<th>COMPUTATIONAL LINGUISTICS</th>
<th>LANGUAGE</th>
<th>LOGIC</th>
<th>DYNAMIC LOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Models of Language</td>
<td>Imperative Meaning in Context</td>
<td>Applications of Intuitionistic Logics</td>
<td>Dynamic Epistemic Logic</td>
</tr>
<tr>
<td>John Paolillo</td>
<td>Cleo Condoravdi and Sven Lauer</td>
<td>David McCarty</td>
<td>Hans van Ditmarsch</td>
</tr>
<tr>
<td>Sycamore Hall 200</td>
<td>Swain West 103</td>
<td>Kirkwood Hall 212</td>
<td>Swain East 140</td>
</tr>
<tr>
<td>10:30</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Learning Theory</td>
<td>Phonological Relationships in Linguistic Theory</td>
<td>Logics: A Modal Perspective</td>
<td></td>
</tr>
<tr>
<td>Shalom Lappin</td>
<td>Kathleen Currie Hall</td>
<td>Carlos Areces and Patrick Blackburn</td>
<td></td>
</tr>
<tr>
<td>Kirkwood Hall 212</td>
<td>Swain West 103</td>
<td>Swain East 140</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>LUNCH BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependency Parsing</td>
<td>Minimalist Grammars</td>
<td>Markov Logic</td>
<td>Multi-Agent Belief Dynamics</td>
</tr>
<tr>
<td>Sandra Kübler and Markus Dickinson</td>
<td>Greg Kobele</td>
<td>Mathias Niepert</td>
<td>Alexandru Baltag and Sonja Smets</td>
</tr>
<tr>
<td>Swain West 103</td>
<td>Kirkwood Hall 212</td>
<td>Sycamore Hall 200</td>
<td>Swain East 140</td>
</tr>
<tr>
<td>3:30</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workshop on Inference from Text</td>
<td>Natural Language Semantics</td>
<td>Introduction to (Finitely) Many-Valued Logics</td>
<td>Logics of Rational Agency</td>
</tr>
<tr>
<td>Larry Moss and Annie Zaenen</td>
<td>Reinhard Muskens</td>
<td>Francis Jeffry Pelletier</td>
<td>Eric Pacuit</td>
</tr>
<tr>
<td>Swain West 103</td>
<td>Swain East 140</td>
<td>Kirkwood Hall 212</td>
<td>Sycamore Hall 200</td>
</tr>
</tbody>
</table>
Tutorials

TUTORIALS
SWAIN EAST 140

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Introduction to Logic</td>
<td>Carlos Areces</td>
</tr>
<tr>
<td>11:00</td>
<td>Basics of Formal Language Theory</td>
<td>Larry Moss</td>
</tr>
<tr>
<td>12:00</td>
<td>LUNCH BREAK</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Modal and Epistemic Logic</td>
<td>Hans van Ditmarsch</td>
</tr>
<tr>
<td>3:00</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>Panel Discussion: Computational Linguistics</td>
<td>Markus Dickinson and Sandra Kübler</td>
</tr>
</tbody>
</table>

Workshops | Sessions

NEW DIRECTIONS IN DYNAMIC EPISTEMIC LOGIC
SWAIN EAST 140

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>L_a, an Aspect-Oriented Multi-Modal Logic</td>
<td>Arsene Sabas and Michael Boyer</td>
</tr>
<tr>
<td>9:40</td>
<td>Moorean Phenomena in Epistemic Logic</td>
<td>Wes Holliday and Thomas Icard</td>
</tr>
<tr>
<td>10:30</td>
<td>Tracking the Truth, Keep Changing Your Beliefs! Or, Dynamic Belief Revision as a Learning Method</td>
<td>Alexandru Baltag, invited speaker</td>
</tr>
<tr>
<td>1:00</td>
<td>Constrained Scrambling in CCG: A Case Study in Japanese</td>
<td>Wren Thornton</td>
</tr>
<tr>
<td>1:40</td>
<td>German Impersonal Pronouns: Pragmatics and Semantic Differences</td>
<td>Sarah Zobel</td>
</tr>
<tr>
<td>2:20</td>
<td>A Game Theoretical Analysis of Slurs and Appropriate Use</td>
<td>Adam Croom</td>
</tr>
<tr>
<td>3:20</td>
<td>Bounded Rational Probabilistic Epistemic Dynamics in Bilateral Bargaining Under Uncertainty</td>
<td>Paul Varkey</td>
</tr>
<tr>
<td>4:00</td>
<td>Disjunction Property and Finite Model Property For an Intuitionistic Epistemic Logic</td>
<td>Yoichi Hirai</td>
</tr>
<tr>
<td>4:40</td>
<td>Reasoning About Belief in Social Software Using Modal Logic</td>
<td>Ronald de Haan</td>
</tr>
<tr>
<td>5:20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information

Registration
Mon 8:00 a | Rawles Hall 107
For those who have not registered, or who registered and did not yet pay, there will be a formal registration.

Coffee Breaks
Mon–Fri 10:30–11:00 a, 3:30–4:00 p
Rawles Hall 107
Please note that we plan to give out specially-designed mugs for hot and cold drinks, and so we are not purchasing any additional cups for the school. The mugs will be available at the Monday morning registration and at the first break itself.

Reception
Mon 7:00–8:30 p
Woodburn House, 519 North College Avenue
There will be an opening reception on Monday evening in Woodburn House, which is about a 15-minute walk from where most of the NASSLLI classes are held. The reception will feature light snacks and live music. In addition, your registration packet includes a ticket for a soft drink, beer, or glass of wine. Following the reception, you may wish to eat dinner at one of the many downtown restaurants.

Party!
Thu 6:30 p | Mathers Museum, 416 North Indiana Avenue (near Eighth Street)
There will be a party on Thursday evening at the Mathers Museum, 416 North Indiana Avenue. This is about 15 minutes walking from Rawles Hall. The party will include dinner from Siam House.

Talks

INVITED LECTURE

Measuring Belief
Rohit Parikh
Wed 6:30–8:00 p | Rawles Hall 100
Knowledge is understood as justified true belief, plus something else, as we all know from Gettier. But if belief is an important component of knowledge, then in order to understand knowledge, we need to think more about belief.

Actual beliefs are not closed under logical inference, and they can be inconsistent with each other. Moreover, expressed belief may conflict with observed behavior. So we need something more refined than Kripke structures to deal with actual belief.

We point out that beliefs can be observed in two ways. One is by simply asking the agent and presuming that one is told the truth. The other way is to observe the choices made by an agent and inferring from these observations both the beliefs and the preferences of the agent.

This second way was pursued, among others, by Ramsey and Savage, and is, indeed the only way we have of assigning beliefs to infants and animals. But we still retain the “vanilla” notion of belief, namely beliefs ascertained by asking questions. Adults of course have both notions of belief and they are often, but not always, correlated with each other.

We will discuss these two ways of understanding belief, compare them with Tamar Gendler’s notion of “alief,” and also mention the experimental work of Verbrugge and her colleagues.
Tutorial and Course Descriptions

See pages 6–7 for overall schedule

TUTORIALS

Introduction to Logic
Carlos Areces
Sun 9:00–11:00 a | Swain East 140
In this tutorial are presented the basics of logic, focusing particularly on classical propositional logic and its syntax, semantics, notions of satisfiability, validity, entailment, and theorem.

Basics of Formal Logic
Larry Moss
Sun 11:00 a–12:00 p | Swain East 140
The basics of formal language theory are given, including regular and context-free languages, and also the Lambek Calculus.

Modal andEpistemic Logic
Hans van Ditmarsch
Sun 1:00–3:00 p | Swain East 140
The basics of modal and epistemic logic are presented, with an eye towards the course that will be taught by the same instructor on Dynamic Epistemic Logic, and also the courses by Eric Pacuit and by Alexandru Baltag and Sonja Smets.

Panel Discussion: Computational Linguistics
Markus Dickinson and Sandra Kübler
Sun 3:30–4:30 p | Swain East 140
The presenters lead a panel discussion on the major issues in computational linguistics for the next 10 years, and what kind of background should one acquire to enter the field.

COMPUTATIONAL LINGUISTICS

Computational Learning Theory and Poverty of the Stimulus Arguments
Shalom Lappin
Mon–Fri 11:00 a–12:30 p | Kirkwood Hall 212
This course is about arguments from the poverty of the stimulus (APS) and their consequences for discussions of language learnability. The course will cover topics in computational learning theory such as the Gold paradigm and probabilistic learning. Technical results have been invoked to argue for strong domain specific learning biases encoded as constraints on the hypothesis space of possible natural language grammars. The course will examine versions of the APS, and will argue that they depend upon problematic assumptions concerning the learning situation and the target class. By revising these assumptions, one arrives at more encouraging results for the classes of learnable languages, and for the tractability of grammar induction through domain general probabilistic learning algorithms. These results undermine learning theoretic versions of the
COURSE AND TUTORIAL DESCRIPTIONS

APS as a motivation for a strong bias theory of UG.

The course will be based the learning theoretic chapters of Alex Clark and Shalom Lappin (2010), Linguistic Nativism and the the Poverty of the Stimulus, Wiley Blackwell, Oxford.

Dependency Parsing
Sandra Kübler and Markus Dickinson
Mon–Fri 2:00–3:30 p | Swain West 103

Dependency-based methods for syntactic parsing are becoming more and more popular in the computational linguistics community. The aim of this course is to give an overview of the state of the art in dependency parsing, including computational methods for dependency analysis as well as available resources for different languages in terms of parsers and syntactically annotated data resources. After an introduction, in which the basic terms will be defined, the three main parsing methods for dependency parsing will be presented: dependency parsing based on dynamic programming techniques, dependency parsing as constraint satisfaction, and dependency parsing with deterministic parsing algorithms combined with machine learning techniques. The course will also give an overview of existing implementations and treebanks, followed by a discussion of the pros and cons of dependency parsing and an outlook on the expected developments in this area.

Statistical Models of Language
John Paolillo
Mon–Fri 9:00–10:30 a | Sycamore Hall 200

For the past fifteen years, increasing attention has focused on the application of statistical methods and estimation heuristics to Natural Language Processing. With the availability of large corpora, “empirical” approaches are able to produce acceptable system performance using linguistically simpler forms of information. Unfortunately, the relationship of the models used in Natural Language Processing to the scientific goals of understanding the workings of natural language has become somewhat muddled. This course illustrates that this need not be so: if one begins with a clear conception of the process to be observed, and its relation to data, then a statistical model can be constructed which permits interesting questions to be asked and answered within the paradigm of statistics. This results in a truly empirical approach in which language-related heuristics are harnessed in a rigorous framework that permits specific questions to be addressed in an incremental programmatic fashion.

Workshop on Inference from Text
Larry Moss and Annie Zaenen
Mon–Fri 4:00–5:30 p | Swain West 103

This NASSLI workshop runs concurrently with the courses. It mainly consists of papers submitted by authors and reviewed by a committee. The topic is the intersection between two areas of work: textual entailment as an area of natural language processing, and natural logic as an area of logic and natural language semantics. The first topic deals with a current challenge in the areas of question answering, information retrieval and extraction, and document summarization, the challenge of capturing inference in actual texts. The second topic is the attempt to provide logical systems for inference in small fragments of language, and to study the computational properties of those systems. Depending on the number of submissions, the workshop may also include overview talks on these topics. The committee includes Johan Bos (Sapienza University of Rome), Nissim Francez (Technion University), Bill MacCartney (Aardvark), Chris Manning (Stanford University), and the workshop organizers.
Imperative Meaning in Context

Cleo Condoravdi and Sven Lauer
Mon–Fri 9:00–10:30 a | Swain West 103

This course is concerned with the performative effects of ‘conduct-guiding’ natural language utterances. Imperatives are the prototypical type of expression that can be used to bring about such effects: they can be used for a variety of functions, such as to command, request, permit, wish, concede, or give advice. Many other forms can be used as well. The interactional force such an expression can have on any given occasion of utterance depends on both the context and its conventional meaning. The challenge for theories of natural language is thus to get the division of labor between (conventional) semantic meaning and (non-conventional) pragmatic reasoning right, so as to correctly predict all (and only all) possible expression/context/force triples. The course will survey theories of imperatives in linguistic semantics, philosophy and logic with an emphasis on how well they rise to the challenge. It also develops an approach of its own. A basic knowledge of formal semantics is required.

Minimalist Grammars

Greg Kobele
Mon–Fri 2:00–3:30 p | Kirkwood Hall 212

Research in the tradition of Chomsky’s minimalist program is often inaccessible to non-minimalists, partly because of the highly intuitive level at which much of the work in this tradition is conducted. This course will show how major components of recent Chomskian syntax can be expressed in formal grammars inspired by Stabler’s “minimalist grammar” (MG). Many MG variants have been rigorously related to well-understood formalisms such as multi-component tree adjoining grammars. As a result, a wide range of Chomskian proposals can be understood and assessed by formally minded linguists from every linguistic tradition. Considering especially recent (empirically consequential) proposals about locality, copying operations, adjunction, and interfaces (phonetic, morphological, semantic), this formal treatment sometimes reveals surprising aspects of those proposals that have been obscured in the informal literature.

Natural Language Semantics

Reinhard Muskens
Mon–Fri 4:00–5:30 p | Swain East 140

This course offers a quick-paced introduction to natural language semantics in the logical tradition initiated by Richard Montague. It is geared towards students who have a good working knowledge of (classical) logic but no previous exposure to natural language semantics. Some familiarity with linguistics would be helpful but is certainly not necessary. Students will leave with a good understanding of the essentials of semantics in the Montague tradition and be familiar with some classical analyses of semantic phenomena. They will also have a basic understanding of how some offshoots of the Montagovian paradigm, such as Situation Semantics and Discourse Representation Theory, relate to the original theory. Though the course is aimed at beginners, students who are already familiar with Montague’s theory may want to take the course nevertheless, because this course will present the essentials of semantics in a way which radically streamlines many of the standard presentations, and bring students to a considerable level of sophistication quickly.
Phonological Relationships in Linguistic Theory
Kathleen Currie Hall
Mon–Fri 11:00 a–12:30 p | Swain West 103

This course has three goals: (1) to provide a basic background in the definition and role of phonological relationships (contrast, allophony) in linguistic theory; (2) to introduce some of the many problems in the usual definitions of phonological relationships; and (3) to demonstrate how the tools of statistics and computational linguistics (probability, information theory, corpus-based approaches to linguistic description) can be used to solve these problems. Presenting the Probabilistic Phonological Relationship Model introduced by the instructor, the course also shows how to apply the model to corpora of linguistic data. This course will not only provide students with insights into the future of probabilistic phonology but also hands-on experience with applying mathematical models to linguistic data. Some specific background in phonology is useful but not necessary, as long as the student has general knowledge of linguistics or information theory.

LOGIC

Applications of Intuitionistic Logics
David McCarty
Mon–Fri 9:00–10:30 a | Kirkwood Hall 212

Intended for cognitive scientists, computer scientists, mathematicians, and philosophers with a course in logic, this course is an in-depth look at intuitionistic logics. It begins with a presentation of logics of expanding information. It includes interpretations over frames and topologies, and Heyting algebra. It also covers computational models and realizability, and topics related to computable mathematics and set theory and algebra. Computational models of intuitionistic logic contain nonclassical sets that are potentially infinite and are able to represent the creative or expanding character of mathematical knowledge and human computation. This is related to the point that familiar models of mathematical cognition based upon standard formal systems and their elaborations do not adequately reflect the creativity of the mathematical mind. The course concludes with a survey of the answers provided by intuitionism to questions arising about language, including the question, “How large is a language?”

Logics: A Modal Perspective
Carlos Areces and Patrick Blackburn
Mon–Fri 11:00 a–12:30 p | Swain East 140

The course introduces a number of logics that are important in many modern scientific disciplines: propositional logic, modal and temporal logics, description logics, first-order logic, fix-point logic and second-order logic. It will introduce them in a way that makes clear both the underlying unity of these systems, their differences, possible uses and applications. Beginning with propositional logic, it presents logical languages of increasing strength for talking about relational structures, and in parallel it studies inference tasks (satisfiability, model checking, model building, etc.) and algorithms for them. The instructors believe that the course material is indispensable to a modern education in logic. Unfortunately, much of it is only currently available in advanced courses and textbooks. This course is designed to make this material accessible to an interdisciplinary audience, and it is based on a book being written by the instructors.
Markov Logic

Mathias Niepert
Mon–Fri 2:00–3:30 p | Sycamore Hall 200

Probabilistic logics are important due to their ability to simultaneously model ‘hard’ and ‘soft’ logical constraints. The difference between these is that hard constraints always hold, while soft ones typically hold. Given a collection of hard and soft constraints, probabilistic logics can infer the most likely alignment by computing one that satisfies all of the hard and most of the soft constraints. Markov logic is such a probabilistic logic, combining the theory of Markov networks with that of first-order logic. It originates in a 2006 paper by Richardson and Domingos. The course will include basic probability theory, then move to Markov logic itself. The last portion of the course will be devoted to applications in computational linguistics and the semantic web. An additional goal is to show students how to employ Markov logic in their own fields of research.

Introduction to (Finitely) Many-Valued Logics

Francis Jeffry Pelletier
Mon–Fri 4:00–5:30 p | Kirkwood Hall 212

Over the decades there have been many proposals that suggest that our explanation of certain phenomena ought to be captured in part by a many-valued theory. This is most prominent in philosophy, but it also occurs in linguistics (especially semantics) and artificial intelligence. This course presents the variety of finitely-many-valued logics, and shows how to evaluate (at least on a superficial level) which of these logics are suitable to describe various phenomena. On the formal level, we will discuss issues of expressive completeness, of the possible interpretations of the logical operators using the non-standard truth values, and topics concerning deduction, such as designated values, validity, and the deduction theorem. A general method for using many-valued semantic tableaux will be described for use on these logics. On a different level, we will investigate the logical relations among various of the well-studied many-valued logics, showing which logics are included in which other logics. The background knowledge of logic that is presumed is just classical propositional logic, either through a philosophy logic course, a linguistics semantics course, or a computing discrete math course.

Dynamic Logic

Dynamic Epistemic Logic

Hans van Ditmarsch
Mon–Fri 9:00–10:30 a | Swain East 140

Epistemic logic models knowledge and belief in multi-agent systems. The topic has been developed several ways and now is seen as a strand of modal logic with epistemic modal operators for knowledge and dynamic modal operators for knowledge and belief change. The course teaches the basics of Dynamic Epistemic Logic, focussing on the semantics and the applications. It includes: (i) epistemic logic (including group epistemic operators such as common knowledge), (ii) public announcement logic, (iii) action model logic (full expressive power, includes non-public events), (iv) recent developments (factual change, belief revision), (v) applications and puzzles (communication protocols, 100 prisoners, hangman paradox, etc). This course presupposes knowledge of the syntax and semantics of basic modal logic. Note that the day prior to NASSLLI classes there will be an intensive tutorial on related topics.
Logics of Rational Agency
Eric Pacuit
Mon–Fri 4:00–5:30 p | Sycamore Hall 200
This course will introduce logics for reasoning about communities of rational and not-so rational agents engaged in some form of social interaction. Much of this work builds upon existing logical frameworks developed by philosophers and computer scientists incorporating insights and ideas from philosophy, game theory, decision theory and social choice theory. The result is a web of logical systems each addressing different aspects of rational agency and social interaction. Rather than providing an encyclopedic account of these different logical systems, we will focus on the main conceptual and technical issues that drive a logical analysis. The main objective is to see the various logical systems as a coherent account of rational agency and social interaction. The course will not restrict attention to any one specific logical framework. Rather, the primary objective will be to discuss a number of different logical frameworks toward the goal of understanding how they work together.

Multi-Agent Belief Dynamics
Alexandru Baltag and Sonja Smets
Mon–Fri 2:00–3:30 p | Swain East 140
This course has a strong inter-disciplinary character, touching on issues of relevance to computer science, artificial intelligence, epistemology, game theory, social choice Theory, etc. It presents a family of logics for reasoning about belief dynamics in a multi-agent context. Phenomena to be modeled include single-agent belief revision, “updates” and “upgrades” induced by various types of learning, different forms of belief “merge” induced by various types of communication, as well as more complex belief-changing interactions such as deceitful communication, bluffing, secrecy, wiretapping etc. The logics in this course descend from propositional dynamic logic, and they also incorporate ideas from belief revision theory and non-monotonic logics. This course is related to the NASSLLI course on Dynamic Epistemic Logic. This course presupposes knowledge of the syntax and semantics of basic modal logic. There will be a pre-NASSLLI tutorial day to help with this.

NEW DIRECTIONS IN DYNAMIC EPISTEMIC LOGIC
Hans van Ditmarsch and Eric Pacuit
Sat 9:00–11:30 a | Swain East 140
There is a growing interest in logics that reason about interaction in communities of rational and not-so rational agents. The goal of this one-day workshop is to explore these dynamic epistemic logics, in the broadest possible sense. Researchers from various fields including logic, game theory, artificial intelligence, philosophy, linguistics, and cognitive science will present a paper describing original or recently published work.

L_a, an Aspect-Oriented Multi-Modal Logic
Arsene Sabas and Michael Boyer
9:00–9:40 a | Swain East 140

Moorean Phenomena in Epistemic Logic
Wes Holliday and Thomas Icard
9:40–10:20 a | Swain East 140

Tracking the Truth, Keep Changing Your Beliefs! Or, Dynamic Belief Revision as a Learning Method
Alexandru Baltag, invited speaker
10:30–11:30 a | Swain East 140
Casual and Fine Dining

See page 2 for Campus Map

In the IMU
The Market, Burger King, Pizza Hut, Kiva
Fast food, Snacks 🍔
(812) 856-0379
Starbucks
Coffee ☕️
Sugar 'n' Spice
Coffee and Bakery
The Tudor Room
Buffet
(812) 855-1620

Fourth Street
Anatolia
Turkish
405 East Fourth Street
(812) 334-2391
Anyetsang's Little Tibet
Tibetan 🐘
415 East Fourth Street
(812) 331-0122
Ashenda's Abasha
Ethiopian
424 East Fourth Street
(812) 333-5522
Basil Leaf
Vietnamese
404 East Fourth Street
(812) 330-8978
Casablanca
Mediterranean 🐘
402 East Fourth Street
(812) 335-9048
Café Ami
Korean and Japanese
409 East Fourth Street
(812) 339-2735
Dats
Cajun, Creole 🍳
211 South Grant Street
(812) 339-3090
Dunn Inn
American 🐘
208 South Dunn Street
(812) 330-2002

Mandalay
International 🌍
413 East Fourth Street
(812) 339-7334
Puccini's La Dolce Vita
Italian 🍣
420 East Fourth Street
(812) 333-5522
Siam House
Thai 🐘
420 East Fourth Street
(812) 331-1233
Snow Lion
Tibetan 🐘
113 South Grant Street
(812) 336-0835

Indiana Avenue
Buffa Louie's
Wings 🍦
114 South Indiana Avenue
(812) 333-3032
Chow Bar
Asian 🍣
216 South Indiana Avenue
(812) 336-3888
Dagwood's Subs
Sandwiches 🍔
116 South Indiana Avenue
(812) 333-3000
Penn Station
Sandwiches 🍔
212 South Indiana Avenue
(812) 333-7366
Qdoba
Mexican, Southwest 🌯
116 South Indiana Avenue
(812) 339-1122
Starbucks
Coffee ☕️
110 South Indiana Avenue
(812) 333-6075

Kirkwood Area
Bloomington Bagel
Bagels and Coffee ☕️
113 North Dunn Street
(812) 333-4653
Café Django
International 🐘
116 North Grant Street
(812) 335-1297
Cafe Pizzaria
Pizza 🍕
405 East Kirkwood Avenue
(812) 332-2111
Chipotle Grill
Burritos 🍚
420 East Kirkwood Avenue
(812) 330-1435
Esan Thai
Thai 🐘
221 East Kirkwood Avenue
(812) 333-8424
Finch's Brasserie
Gourmet American 🍴
514 East Kirkwood Avenue
(812) 332-2700
Jimmy John's Deli
Sandwiches 🍔
430 East Kirkwood Avenue
(812) 332-9265
Kilroy's Bar and Grill
Bar and Grill 🍺
502 East Kirkwood Avenue
(812) 332-3700
Laughing Planet
Burritos 🍚
322 East Kirkwood Avenue
(812) 332-2233
Nick's English Hut
Bar and Grill 🍺
East Kirkwood Avenue
(812) 332-4040
Noodles & Company
Noodles 🍝
517 East Kirkwood Avenue
(812) 323-1400

Pita Pit
Pitas and Soup 🍣
530 East Kirkwood Avenue
(812) 355-3500
The Pour House Café
Coffee 🍺
314 East Kirkwood Avenue
(812) 339-7000
Runcible Spoon
Breakfast, Coffee, Sandwiches 🍜
412 East Sixth Street
(812) 334-3997
Shanti
Indian 🐘
221 East Kirkwood Avenue
(812) 333-0303
Soma
Coffee and Juice Bar 🍼
322 East Kirkwood Avenue
(812) 331-2770
The Farm
Indiana Gourmet 🐘
108 East Kirkwood Avenue
(812) 323-0002
Uncle D's Pizza
Pizza 🍕
430 East Kirkwood Avenue
(812) 339-2260
Village Deli
Breakfasts, Sandwiches 🍔
409 East Kirkwood Avenue
(812) 336-2303

Downtown Area
Bloomington Bagel
Company 🍔
238 North Morton Street
(812) 349-4653
Bloomington Sandwich
Sandwiches 🍔
107 North College Avenue
(812) 330-9611
Bobby's Pub
American 🍗
100 College Avenue
(812) 330-0955

Key
- Inexpensive
- Average
- Above average
- Delivery available
- Vegetarian options
- Wi-fi enabled
Butch’s
New Jersey, Italian, Jewish
120 East Seventh Street
(812) 822-0210

Coaches Lounge
Bar and Grill
24 North College Avenue
(812) 339-3537

Crazy Horse
Bar and Grill
214 West Kirkwood Avenue
(812) 336-8877

Grazie!
Italian
106 West Sixth Street
(812) 323-0303

Irish Lion
Irish Bar and Grill
212 West Kirkwood Avenue
(812) 336-9076

Janko’s Little Zagreb
Steakhouse
223 West Sixth Street
(812) 332-0694

Japonee
Asian
320 North Walnut Street
(812) 333-3122

Kilroy’s Sports Bar
Bar and Grill
319 North Walnut Street
(812) 333-6006

Malibu Grill
Grill
106 North Walnut Street
(812) 333-6006

Max’s Place
Pizza and Pub
109 West Seventh Street
(812) 336-5169

Michael’s Uptown Café
American and Cajun
102 East Kirkwood Avenue
(812) 339-0900

Opie Taylor’s
Bar and Grill
110 North Walnut Street
(812) 333-7287

Le Petite Café
French
308 West Sixth Street
(812) 334-9747

Restaurant Talient
American Fine Dining
208 North Walnut Street
(812) 330-9801

Roots
Vegetarian Food and Juice Bar
124 North Walnut Street
(812) 336-7668

Samira
Afghan
100 West Sixth Street
(812) 331-7361

Scholar’s Inn Bakehouse
Bakery and Sandwiches
125 North College Avenue
3002 East Third Street
(812) 331-6029

Scotty’s Brewhouse
Burgers and Grill
302 North Walnut Street
(812) 333-5151

Stefano’s Ice Café
Ice Cream, Coffee
101 West Kirkwood Avenue
(812) 331-0575

Trojan Horse
Greek
100 East Kirkwood Avenue
(812) 332-1101

Further Afield

Chocolate Moose
Ice Cream
401 South Walnut Street
(812) 333-0475

Lennie’s
Bar and Grill, Pizza
1795 East Tenth Street
(812) 323-2112

Raggazzi Art Café
Italian
212 South Rogers Street
(812) 323-9005

Sobon
Korean
1811 East Tenth Street
(812) 333-1004

Scholar’s Inn
American Fine Dining
717 North College Avenue
(812) 332-1892

Truffle’s 56 Degrees
American Fine Dining
131 South College Mall
(812) 330-1111

Upland Brewing Company
Bar and Grill
245 North Walnut Street
(812) 336-2337

Bars and Clubs

The Alley
210 West Kirkwood Avenue
(812) 336-2216

Axis Night Club
419 North Walnut Street
(812) 332-0402

Bears Place
1316 East Third Street
(812) 339-3460

Bluebird Nightclub
216 North Walnut Street
(812) 336-3984

Bobby’s Pub
101 West Kirkwood Avenue
(812) 330-0955

Bullwinkles
201 South College Avenue
(812) 334-3232

Chili’s Grill and Bar
2811 East Third Street
(812) 334-0535

Crazy Horse
214 West Kirkwood Avenue
(812) 336-8877

Fifty-Six Degrees Bar
1131 South College Mall Road
(812) 330-1111

Jake’s Nightclub
419 North Walnut Street
(812) 332-0402

Kilroy’s Sports Bar
319 North Walnut Street
(812) 333-6006

Night Moves
1730 North Walnut Street
(812) 335-1850

Office Lounge
3900 East Third Street
(812) 332-0911

Players Pub
424 South Walnut Street
(812) 334-2080

Sunset Tavern
400 West Eleventh Street
(812) 332-7702

Uncle Elizabeth’s
502 North Morton Street
(812) 331-0060

Uncle Festor’s
430 East Kirkwood Ave Ste 7
(812) 323-1023

Upstairs Pub
430 East Kirkwood Avenue
(812) 333-3003

Video Saloon
105 West Seventh Street
(812) 333-0064